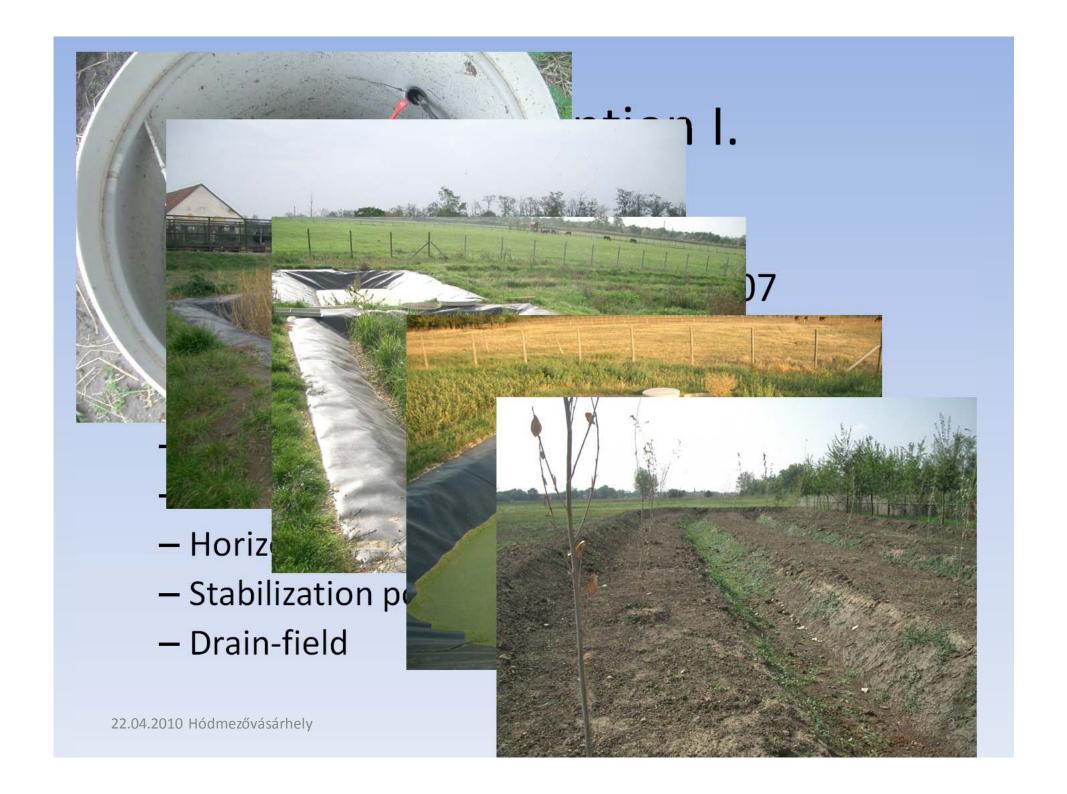
Workshop of "Tisa-Tisza Project" 10 December 2010 Hódmezővásárhely

A COMBINED CONSTRUCTED WETLAND FOR TREATMENT OF MILK HOUSE EFFLUENTS IN HÓDMEZŐVÁSÁRHELY, HUNGARY


ERNŐ DITTRICH

assistant lecturer at Department of Environmental Engineering
University of Pécs

dittrich@witch.pmmf.hu

Constructed wetlands in Hungary

- Water pollution control many technological alternatives – environmental aims - economical opportunities
- The agriculture needs to decrease the free water pollution and groundwater pollution of sector
- Constructed wetlands: cost effective technological opportunity
- TOKAI-project
 - Local University
 - Katholieke Hogeschool Kempen Geel (Belgium)
- Aim of research

Sampling and analysis

Parameters and analyzing methods

Parameters	Methods/Instruments
COD	Photometric Method/ PC-Multidirect
TN	Photometric Method/ PC-Multidirect
NH ₄ -N	Photometric Method / PC-Multidirect
ТР	Photometric Method / PC-Multidirect
PO ₄ -P	Photometric Method / PC-Multidirect
рН	Standard method / OP-264/1 pH-meter

Water samples were analyzed in the lab of University of Szeged, College of Agriculture

Description of sampling points

Sampling points	Description
I.	In pump chamber
II.	Effluent of vertical flow SF-CW
III.	Effluent of horizontal flow SF-CW
IV.	Effluent of stabilization pond

Characterization of influent

- Wastewater is transported to the septic tank of pilot plant from the collection chamber of cow milk house
- Amount of wastewater is 1m³/day
- Quality after mechanical pre-treatment:

	COD [mg/l]	TN [mg/l]	NH ₄ -N [mg/l]	TP [mg/l]	PO ₄ -P [mg/l]	рН
Min.	223	55	28.0	18	17.6	6.8
Max.	678	98	49.8	37	29.0	7.3
Av.	453	71.8	39.3	25.8	23.6	7.1
PE*	3.8	6.5	4.4	8.6	-	-

- Higher COD, TN and TP concentration than commercial wastewater
- BOD:COD ratio is 1:5.3 low biodegradibility
- Strong anaerobic condition

Experiences of vertical flow bed

Experiment results and some calculated parameters of vertical flow bed

		COD [mg/l]	TN [mg/l]	NH ₄ -N [mg/l]	TP [mg/l]	PO ₄ -P [mg/l]	На
	Min. conc. of effluent	48	18	17.1	17.0	15.7	7.1
ers	Max. conc. of effluent	620.0	67.0	65.0	34.0	24.0	7.5
met	Av. conc. of effluent	247.4	44.7	37.5	25.3	19.8	7.2
oara	Av. efficiency (%)	45.4	37.8	4.6	2.1	16.3	-
calculated parameters	Specific area (m²/PE)	2.2	1.3	1.9	1.0	-	-
culat	Av. loading (g/day)	453	71.8	39.3	25.8	23.6	-
calc	Specific loading rate (g/m²,d)	53.9	8.5	4.7	3.1	2.8	-
	Hydraulic loading rate (mm/d)			119			

Experiences of horizontal flow bed

Experiment results and some calculated parameters of horizontal flow bed

		COD [mg/l]	TN [mg/l]	NH ₄ -N [mg/l]	TP [mg/l]	PO ₄ -P [mg/l]	Нф
	Min.	33	17	10.6	5.9	5.2	7
	Max.	430. 0	58.0	27.2	29.0	22.8	8.0
calculated parameters	Av.	177. 1	32.2	17.5	20.8	15.9	7.5
para	Av. efficiency (%)	28.4	28.1	53.2	17.7	19.5	-
ated	Specific area (m²/PE)	3.8	2.2	3.3	1.7	-	-
calcula	Av. loading (g/day)	247. 4	44.7	37.5	25.3	19.8	-
	Specific loading rate (g/m²,d)	17.4	3.1	2.6	1.8	1.4	-
	Hydraulic loading rate (mm/d)			70			

Experiences of stabilization pond

Experiment results and some calculated parameters of stabilization pond

		COD [mg/l]	TN [mg/l]	NH ₄ -N [mg/l]	TP [mg/l]	PO ₄ -P [mg/l]	рН
	Min.	74	5	0.22	3.9	3.4	7.0 4
۶	Max.	177. 0	25.0	12.4	22.0	7.2	8.2
calculated parameters	Av.		13.8	5.0	10.7	4.6	7.6
d par	Av. efficiency (%)	34.8	57.0	71.6	48.7	71.1	-
late	Specific area (m²/PE)	3.2	1.8	2.8	1.4	-	-
calcul	Av. loading (g/day)		32.2	17.5	20.8	15.9	-
	Specific loading rate (g/m²,d)	14.8	2.7	1.5	1.7	1.3	-
Hydraulic loading rate (mm/d)				83			

Comparison of Hungarian ELV and effluent quality

Component	ELV	Quality o	f effluent f	Total ciricicity		
	(mg/l)	min.	max.	av.	(%)	
COD	300*	74	177	115.5	74.5	
NH ₄ -N	20*	0.22	12.4	5	87.3	
TN	55*	5	25	13.8	80.7	
TP	10*	3.9	22	10.7	58.7	

*ELV under 600 PE (Hungarian law number: 28/2004 (XII.25) KvVM r.)

CONSCLUSIONS

- The efficiencies are very good for the complete system especially if it is noted that values do not contain the removal of mechanical pre-treatment.
- The pilot plant hadn't overrun the ELV for COD, TN and NH₄-N.
- The TP removal efficiency is adequate too, but not enough to keep the Hungarian ELV for free surface water.
- The efficient of COD and NH₄-N removal can increase with higher specific area of VF-SFCV
- Because of low number of data, need to make a more detailed measuring program focused on the long-term and winter time processes

ACKNOLEDGEMENTS

- This project is funded by the Department of Foreign Policy of the Flemish Government.
- Support for this project was provided by the University of Szeged, College of Agriculture (Hódmezővásárhely, Hungary) and the Katholieke Hogeschool Kempen Geel (Belgium).
- Specially tanks for: Szűcsné Dr. Péter Judit and Rob Van Deun

Thank you for your attention!